Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction.

نویسندگان

  • Lynne W Elmore
  • Catherine W Rehder
  • Xu Di
  • Patricia A McChesney
  • Colleen K Jackson-Cook
  • David A Gewirtz
  • Shawn E Holt
چکیده

Direct experimental evidence implicates telomere erosion as a primary cause of cellular senescence. Using a well characterized model system for breast cancer, we define here the molecular and cellular consequences of adriamycin treatment in breast tumor cells. Cells acutely exposed to adriamycin exhibited an increase in p53 activity, a decline in telomerase activity, and a dramatic increase in beta-galactosidase, a marker of senescence. Inactivation of wild-type p53 resulted in a transition of the cellular response to adriamycin treatment from replicative senescence to delayed apoptosis, demonstrating that p53 plays an integral role in the fate of breast tumor cells treated with DNA-damaging agents. Stable introduction of hTERT, the catalytic protein component of telomerase, into MCF-7 cells caused an increase in telomerase activity and telomere length. Treatment of MCF-7-hTERT cells with adriamycin produced an identical senescence response as controls without signs of telomere shortening, indicating that the senescence after treatment is telomere length-independent. However, we found that exposure to adriamycin resulted in an overrepresentation of cytogenetic changes involving telomeres, showing an altered telomere state induced by adriamycin is probably a causal factor leading to the senescence phenotype. To our knowledge, these data are the first to demonstrate that the mechanism of adriamycin-induced senescence is dependent on both functional p53 and telomere dysfunction rather than overall shortening.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different telomere damage signaling pathways in human and mouse cells.

Programmed telomere shortening in human somatic cells is thought to act as a tumor suppressor pathway, limiting the replicative potential of developing tumor cells. Critically short human telomeres induce senescence either by activating p53 or by inducing the p16/RB pathway, and suppression of both pathways is required to suppress senescence of aged human cells. Here we report that removal of T...

متن کامل

Telomerase, senescence and ageing.

Telomeres serve to camouflage chromosome ends from the DNA damage response machinery. Telomerase activity is required to maintain telomeres. One consequence of telomere dysfunction is cellular senescence, a permanent growth arrest state. We review the key regulators of cellular senescence and recent in vivo evidence which supports p53-dependent senescence induced by short telomeres as a potent ...

متن کامل

Age-related telomere uncapping is associated with cellular senescence and inflammation independent of telomere shortening in human arteries.

Arterial telomere dysfunction may contribute to chronic arterial inflammation by inducing cellular senescence and subsequent senescence-associated inflammation. Although telomere shortening has been associated with arterial aging in humans, age-related telomere uncapping has not been described in non-cultured human tissues and may have substantial prognostic value. In skeletal muscle feed arter...

متن کامل

Transcriptome analysis and tumor suppressor requirements of STAT5-induced senescence.

Although it is acknowledged that senescent cells accumulate with age, the molecular mechanisms leading to cell senescence as a function of age remain to be identified. In cell culture models, it has been clearly shown that senescence involves the activation of a DNA damage response secondary to short telomeres or oncogene expression. Oncogenes are altered versions of genes coding for proteins t...

متن کامل

Short telomeres limit tumor progression in vivo by inducing senescence.

Telomere maintenance is critical for cancer progression. To examine mechanisms of tumor suppression induced by short telomeres, we crossed mice deficient for the RNA component of telomerase, mTR(-/-), with Emu-myc transgenic mice, an established model of Burkitt's lymphoma. Short telomeres suppressed tumor formation in Emu-myc transgenic animals. Expression of Bcl2 blocked apoptosis in tumor ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 38  شماره 

صفحات  -

تاریخ انتشار 2002